Life Cycle Models, CMMI, Lean, Six Sigma – Why use them?

John Walz
ASQ Electronics & Communications Division,
Membership Chair,
IEEE Computer Society, VP for Standards

QuEST Forum Best Practices Conference
Track 3 – What, Where, How & Why
Monday, 24-Sep-07, 4:30 – 5:30
John Walz

• Sr. Consultant, The Sutton Group
 – Software / CMMI®
• Retired Lucent / AT&T
• Sr. Member IEEE, Standards Assoc.
• VP for Standards, IEEE Computer
• Vice-Chair Planning, IEEE Software & Systems Standards Committee
• Secretary, TL 9000 SIG
• Membership, Electronics & Communication Division, ASQ
• Blog Author, ASQ Sarbanes-Oxley

© 2007 Walz
Management Systems
ISO 9001 Model of a process-based quality management system

Continual improvement of the quality management system

Customers (and other interested parties) -> Requirements

Input -> Product realization -> Product -> Output

Management responsibility

Resource management

Measurement, analysis and improvement

Satisfaction

ISO 9001 Quality Management System

- The organization shall:
 - **Determine** the needs and expectations of customers and other interested parties
 - **Establish** policies, objectives and a work environment necessary to motivate the organization to satisfy these needs
 - **Design, resource and manage** a system of interconnected processes necessary to implement the policy and attain the objectives
 - **Measure and analyze** the adequacy, efficiency and effectiveness of each process in fulfilling its purpose and objectives and
 - **Pursue** the continual improvement of the system from an objective evaluation of its performance.
ISO 9001 Quality Management System

• Foundation of several industry sector standards
 – Aerospace, AS9100,
 – Automobile, ISO/TS 16949,
 – Chemical, Responsible Care 14001,
 – Medical devices, ISO 13485,
 – Petroleum and natural gas, ISO/TS 29001,
 – Telecom TL 9000
TL 9000

Quality Management System, QuEST Forum
TL 9000 Model

Measurement Collection and Reporting System

<table>
<thead>
<tr>
<th>Hardware Measurements</th>
<th>Software Measurements</th>
<th>Services Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common TL 9000 Measurements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware-Specific Requirements</th>
<th>Software-Specific Requirements</th>
<th>Services-Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common TL 9000 Requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TL 9000 QMS and Measurements System

• ISO 9001 + best practices + best measures = TL 9000
 – 90 Requirement Adders by engineering domains: H, S, V, C
 – 10 Measurements areas for 100+ Product Categories
 • Product, not Process measurements

• TL 9000 requires
 – Life Cycle Model [7.1.C.1],
 – Effectiveness of each process [8.2.3.C.1],
 • Process measurements
 – Error elimination [7.3.5.HS1,2]
 • Focus on defects
Life Cycle Models
7.1.C.1 Life Cycle Model

• The organization shall establish and maintain an integrated set of method(s) that covers the life cycle of its products. The method(s) shall contain, as appropriate, the processes, activities, and tasks involved in the
 – concept,
 – definition,
 – development,
 – introduction,
 – production,
 – operation,
 – maintenance, and
 – (if required) disposal of products, spanning the life of the products.
Life Cycle Models

• waterfall,
• incremental delivery,
• evolutionary development,
• etc.

• Model includes many processes
Life Cycle Processes

- IS 12207 Software Engineering Life Cycle
 - 18 processes
- IS 15288 System Engineering Life Cycle
 - 25 processes
- IS 20000 Service Management
 - 11 processes
- Control Objectives for Information and related Technology (CobiT)
 - 34 processes
- CMMI-DEV Process Areas (PA)
 - 22 processes
Life cycle processes

Organization

Project-Enabling Processes
- Life Cycle Model Management
- Infrastructure Management
- Project Portfolio Management
- Human Resource Management
- Quality Management

Agreement Processes
- Supply
- Acquisition
Life Cycle Process Groups, IS12207, IS 15288

System Life Cycle Processes

<table>
<thead>
<tr>
<th>Agreement Processes</th>
<th>Project Processes</th>
<th>Technical Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Process (Clause 6.1.1)</td>
<td>Project Planning Process (Clause 6.3.1)</td>
<td>Stakeholder Requirements Definition Process (Clause 6.4.1)</td>
</tr>
<tr>
<td>Supply Process (Clause 6.1.2)</td>
<td>Project Assessment and Control Process (Clause 6.3.2)</td>
<td>System Requirements Analysis Process (Clause 6.4.2)</td>
</tr>
<tr>
<td></td>
<td>Decision Management Process (Clause 6.3.3)</td>
<td>System Architectural Design Process (Clause 6.4.3)</td>
</tr>
<tr>
<td></td>
<td>Risk Management Process (Clause 6.3.4)</td>
<td>Implementation Process (Clause 6.4.4)</td>
</tr>
<tr>
<td></td>
<td>Configuration Management Process (Clause 6.3.5)</td>
<td>System Integration Process (Clause 6.4.5)</td>
</tr>
<tr>
<td></td>
<td>Information Management Process (Clause 6.3.6)</td>
<td>System Qualification Testing Process (Clause 6.4.6)</td>
</tr>
<tr>
<td></td>
<td>Measurement Process (Clause 6.3.7)</td>
<td>Software Installation Process (Clause 6.4.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Acceptance Support Process (Clause 6.4.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Operation Process (Clause 6.4.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Maintenance Process (Clause 6.4.10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Disposal Process (Clause 6.4.11)</td>
</tr>
</tbody>
</table>

Software Life Cycle Processes

<table>
<thead>
<tr>
<th>SW Implementation Processes</th>
<th>SW Support Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Implementation Process (Clause 7.1.1)</td>
<td>Software Documentation Management Process (Clause 7.2.1)</td>
</tr>
<tr>
<td>Software Requirements Analysis Process (Clause 7.1.2)</td>
<td>Software Configuration Management Process (Clause 7.2.2)</td>
</tr>
<tr>
<td>Software Architectural Design Process (Clause 7.1.3)</td>
<td>Software Quality Assurance Process (Clause 7.2.3)</td>
</tr>
<tr>
<td>Software Detailed Design Process (Clause 7.1.4)</td>
<td>Software Verification Process (Clause 7.2.4)</td>
</tr>
<tr>
<td>Software Construction Process (Clause 7.1.5)</td>
<td>Software Validation Process (Clause 7.2.5)</td>
</tr>
<tr>
<td>Software Integration Process (Clause 7.1.6)</td>
<td>Software Review Process (Clause 7.2.6)</td>
</tr>
<tr>
<td>Software Qualification Testing Process (Clause 7.1.7)</td>
<td>Software Audit Process (Clause 7.2.7)</td>
</tr>
<tr>
<td>Software Problem Resolution Process (Clause 7.2.8)</td>
<td>Software Reuse Processes</td>
</tr>
</tbody>
</table>

Software Reuse Processes

<table>
<thead>
<tr>
<th>Domain Engineering Process (Clause 7.3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuse Program Management Process (Clause 7.3.3)</td>
</tr>
</tbody>
</table>
Service Management processes, IS 20000

Service Delivery Processes
- Capacity Management
- Service Continuity and Availability Management
- Service Level Management
- Service Reporting
- Information Security Management
- Budgeting and Accounting for IT services

Control Processes
- Configuration Management
- Change Management

Release Processes
- Release Management

Resolution Processes
- Incident Management
- Problem Management

Relationship Processes
- Business Relationship Management
- Supplier Management

© 2007 Walz
Control Objectives for Information and related Technology (CobiT) Processes
Control Objectives for Information and related Technology (CobiT) Processes

AI1 Identify automated solutions
AI2 Acquire and maintain application software
AI3 Acquire and maintain technology infrastructure
AI4 Enable operation and use
AI5 Procure IT resources
AI6 Manage changes
AI7 Install and accredit solutions and changes

PO1 Define a strategic IT plan
PO2 Define the information architecture
PO3 Determine technological direction
PO4 Define the IT processes, organisation and relationships
PO5 Manage the IT investment
PO6 Communicate management aims and direction
PO7 Manage IT human resources
PO8 Manage quality
PO9 Assess and manage IT risks
PO10 Manage projects

ME4 Provide IT governance

ME1 Monitor and evaluate IT performance
ME2 Monitor and evaluate internal control
ME3 Ensure regulatory compliance
ME4 Provide IT governance

DS1 Define and manage service levels
DS2 Manage third-party services
DS3 Manage performance and capacity
DS4 Ensure continuous service
DS5 Ensure systems security
DS6 Identify and allocate costs
DS7 Educate and train users
DS8 Manage service desk and incidents
DS9 Manage the configuration
DS10 Manage problems
DS11 Manage data
DS12 Manage the physical environment
DS13 Manage operations

PO1 Define a strategic IT plan
PO2 Define the information architecture
PO3 Determine technological direction
PO4 Define the IT processes, organisation and relationships
PO5 Manage the IT investment
PO6 Communicate management aims and direction
PO7 Manage IT human resources
PO8 Manage quality
PO9 Assess and manage IT risks
PO10 Manage projects

PO1 Define a strategic IT plan
PO2 Define the information architecture
PO3 Determine technological direction
PO4 Define the IT processes, organisation and relationships
PO5 Manage the IT investment
PO6 Communicate management aims and direction
PO7 Manage IT human resources
PO8 Manage quality
PO9 Assess and manage IT risks
PO10 Manage projects

PO1 Define a strategic IT plan
PO2 Define the information architecture
PO3 Determine technological direction
PO4 Define the IT processes, organisation and relationships
PO5 Manage the IT investment
PO6 Communicate management aims and direction
PO7 Manage IT human resources
PO8 Manage quality
PO9 Assess and manage IT risks
PO10 Manage projects
For 34 CobiT processes you have ...

- Process description
- IT domains & Information Indicators
- IT goals
- Process goals
- Key practices
- Key measurements
- IT Governance & IT resource indicators
CMMI-DEV Process Areas

<table>
<thead>
<tr>
<th>Process Management</th>
<th>Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Process Focus</td>
<td>Organizational Process Definition (+ IPPD Elements)</td>
</tr>
<tr>
<td>Organizational Process Definition</td>
<td>Organizational Process Performance</td>
</tr>
<tr>
<td>Organizational Training</td>
<td>Organizational Innovation and Deployment</td>
</tr>
<tr>
<td>Project Planning</td>
<td>Project Monitoring and Control</td>
</tr>
<tr>
<td>Project Monitoring and Control</td>
<td>Supplier Agreement Management</td>
</tr>
<tr>
<td>Supplier Agreement Management</td>
<td>Integrated Project Management (+ IPPD Elements)</td>
</tr>
<tr>
<td>Integrated Project Management</td>
<td>Risk Management</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Quantitative Project Management</td>
</tr>
<tr>
<td>Engineering</td>
<td>Requirements Management</td>
</tr>
<tr>
<td>Requirements Development</td>
<td>Technical Solution</td>
</tr>
<tr>
<td>Technical Solution</td>
<td>Product Integration</td>
</tr>
<tr>
<td>Product Integration</td>
<td>Verification</td>
</tr>
<tr>
<td>Verification</td>
<td>Validation</td>
</tr>
<tr>
<td>Support</td>
<td>Process and Product Quality Assurance</td>
</tr>
<tr>
<td>Configuration Management</td>
<td>Measurement and Analysis</td>
</tr>
<tr>
<td>Measurement and Analysis</td>
<td>Decision Analysis and Resolution</td>
</tr>
<tr>
<td>Decision Analysis and Resolution</td>
<td>Causal Analysis and Resolution</td>
</tr>
</tbody>
</table>
Network of processes for Life Cycle Model

- List of processes
- Network of processes
Developing software project life cycle process, IEEE 1074

Legend
- In Scope of Standard
- Out of Scope of Standard
- x.y.z Clause Number

Activities from 1074, Annex A 4.1, 4.4

Map
- Select 5.2
- Collection of SPLCMs 4.2.1

SPLCM: Software Project Life Cycle Model
SPLC: Software Project Life Cycle
SPLCP: Software Project Life Cycle Process

© 2007 Walz
CMMI®

Capability Maturity Model Integrated for Development, V1.2, SEI
CMMI to TL 9000

- A CMMI Maturity Level 3 Apprised **software** organization will meet ISO 9001 / TL 9000 requirements with gaps in the following areas:
 - Post deployment support
 - Customer satisfaction surveys
 - Quality partnering
- TL 9000 hardware (H) adders are not addressed in CMMI
Isn’t CMMI Level 3 good enough?

Organizational Process Performance

- Establishes a quantitative understanding of the performance of the organization’s set of standard processes

Quantitative Project Management

- Quantitatively manage the project’s defined process to achieve the project’s established quality and process-performance objectives.
Measurements
Bottom Line

• Process improvement for its own sake will soon die,
• Process improvement should be done to help the business

“In God we trust, All others bring data.”

W. Edwards Deming
TL 9000 Model

- Measurement Collection and Reporting System

- Hardware Measurements
- Software Measurements
- Services Measurements

Common TL 9000 Measurements

- Hardware-Specific Requirements
- Software-Specific Requirements
- Services-Specific Requirements

Common TL 9000 Requirements

Measures and Analysis Process Area
Product vs. Process Measurements

• Product Measurements
 – Shared with Customers
 – Benchmarked with industry

• Process Measurements
 – Not shared, nor benchmarked
 – Predictors of Product Measures
 – Impacted by Suppliers Product Measurements
 – Input to Lean & Six Sigma techniques
Process Measurements

TL 9000 Requirements Release 4.0

• **8.2.3 Monitoring and measurement of processes**
 – The organization shall apply suitable methods for monitoring and, where applicable, measurement of the quality management system processes.
 – These methods shall demonstrate the ability of the processes to achieve planned results.
 – When planned results are not achieved, correction and corrective action shall be taken, as appropriate, to ensure conformity of the product.

• **8.2.3.C.1 Process measurement**
 – Expanded: to include appropriate design process measurements and require performance targets or control limits for key process measurements.

• **7.2.3.HS.2 Design and Development Process Quality Measurements Data Reporting**
 – New: Provide design and development process measurements when requested by the customer

• **7.3.1.HS.2 Design and Development Process Quality Measurement Planning and Implementation**
 – New: Planning during the design and development phase to select and report appropriate design and development process quality measures
Typical Process Measures

- Defects
 - Received & Detected
 - Created & Detected
 - Missed and found later

- Cycle time
 - Calendar
 - Actual

- Costs
 - Total effort
 - Computer resources utilization
 - Rework

- Project Milestones
 - Targets achieved
 - Deviation from targets

- Controls
 - Conformance
 - Risk detection
 - Rework
 - Exceptions approved
Hierarchy of software quality measure framework, IEEE 1061
Statistical Thinking
Lean
Lean Principles

• Lean Manufacturing Processes
 – Helps eliminate production waste, introduce value-added measurements, and push for continuous improvements
• Continuous pursuit of improving the processes
• Philosophy of eliminating all non-value adding activities & reducing waste within the organization
 – Uncover and reduce waste.
 • Engineering defects
 • Wasted time and effort
 – A new way of thinking
 – Whole systems approach
• Lean concept of value flow, or the uninterrupted value flow at the pull of the customer
• Closely associated with "Kaizen", which means “Continuous Improvement”
• Lean implementation precedes Six Sigma
Six Sigma

- **A measurement standard in product variation**
 - A statistical concept measures a process in terms of defects

- **DMAIC method**
 - Define, Measure, Analyze, Improve, and Control

- **Continuous improvement methodology**
 - To improve business processes and products
 - Forces organizations to define their vision of quality in numerical terms.
 - Offers phases, tools, and techniques that help an organization improve their processes
 - Uses data and statistical analysis tools to identify, track and reduce problem areas and defects in products and services
 - Defects are isolated and eliminated and thereby lower the overall costs of rework during production and post production maintenance
DMAIC Roadmap

Define
- Define project scope
- Establish formal project

Measure
- Identify needed data
- Obtain data set
- Evaluate data quality
- Summarize & baseline data

Analyze
- Explore data
- Characterize process & problem
- Update improvement project scope & scale

Improve
- Identify possible solutions
- Select solution
- Implement (pilot as needed)
- Evaluate

Control
- Define control method
- Implement
- Document

Phase Exit Review

© SEI Course "Measuring for Performance-Driven Improvement"
Focus on tools?

• It's not about CMMI or Lean or Six Sigma, it's all about Business Improvement. CMMI and Six Sigma are not ends in themselves but are simply important techniques for leveraging more effective Business Performance.

• The successful use of CMMI, Lean, Six Sigma by various industries is challenging the traditional mantra of being able to use one method only.

• Lean and Six Sigma, with CMMI can be used as complimentary set of improvement methods to provide a lower risk and faster approach, Otherwise:
 – CMMI can yield behavior changes without benefit
 – Six Sigma improvements based solely on data, may miss innovative improvements (assumes a local optimum)
SEI’s IDEALSM Approach (and Six Sigma DMAIC)

Initiating
- **C** Control the processes with measures and analyses
- **D** Define the Problem(s) to be solved (improve Quality, Cycle Time, etc.)

Diagnosing
- **M** Measure the Process against the CMMI Reference Model

Establishing
- **A** Analyze the best ways to implement the changes

Acting
- **I** Implement the changes
- **C** Control the processes with measures and analyses

Stimulus for Change:
- Set Context
- Build Sponsorship

Charter Infrastructure:
- Characterize Current and Desired States

Develop Findings & Consequences:
- Set Priorities

Plan Actions:
- Develop Approach

Implement Solution:
- Refine Solution
- Pilot/Test Solution
- Create Solution
CMMI Process Areas & DMAIC Steps

SEI Course "Measuring for Performance-Driven Improvement"
Lean Six Sigma
Lean Six Sigma (LSS)

- Combines of two complementary techniques, Lean and Six Sigma:
 - Lean
 - increasing the speed of a process,
 - elimination of any non-value added process steps / activities
 - Six Sigma
 - more on quality than speed
 - Lean
 - customer value flow
 - Six Sigma
 - value continues to flow smoothly and to improve.

- LSS Fundamentals
 - Delight your Customers
 - Base Decisions on Data & Facts
 - Work Together for Maximum Gain
 - Improve Your Processes

- LSS
 - does not provide processes or process descriptions
 - emphasizes that speed is directly related to process excellence
 - uses data to identify and eliminate process problems

- Combines general quality guidance with a process-based management approach, describing the criteria that the processes should support
Robust Management System Foundation

- LSS requires first:
 - robust management,
 - sound engineering practices, &
 - process measurement system foundation
 - prior to Lean, Six Sigma, or combined Lean Six Sigma
- Robust management system foundation:
 - ISO 9001,
 - TL 9000, or
 - CMMI-DEV

- Process improvement by
 - set of organizationally adopted processes to be applied by all of their projects, and
 - improving the “set” on the basis of project’s experiences
- Project’s “experience” is factored by
 - Lean principles and
 - Six Sigma principles
- Lean Six Sigma specific improvement techniques
 - Validate specific process changes to be deployed across the organization
 - Quantify savings
 - Encourage future investments
Measures and Analysis: What & How

CMMI: what should be done, not how to do it.

Lean Six Sigma: how to do it – a performance-based methodology for applying measurement and analysis to problem solving and project management

Gary A. Gack and Karl D. Williams
LSS Implementation

• Both Lean and Six Sigma techniques address and change similar
 – management and
 – technical staff behaviors

• Organizational change management approach
 – quicker and less costly than a sequential approach
 – result in changes to:
 • participant’s skills,
 • their tools, and
 • their work processes and artifacts

• Top management has the responsibility providing:
 – overall direction,
 – resources, and
 – control framework
Resources for Improvements

• Whenever objective experiences demonstrate the need for changes to processes and artifacts,
• Then the appropriate IEEE software & system engineering standards can be selected and analyzed for their best practices to be incorporated into
 – processes,
 – internal plans,
 – procedures, and
 – other artifacts,
• to support of Lean Six Sigma implementation.
Conclusions
1st Foundation, 2nd Improvement

- **Foundation**
 - Management System
 - Life cycle models, Software & system engineering, Service, etc.
 - Measurement System
 - Process measures

- **Improvement**
 - Trim the waste and increase overall production value and product quality
 - Lean
 - Six Sigma
 - Lean Six Sigma
 - Alternate 😐
 - *improving an undocumented ‘fuzzy’ process, which means making assumptions about what the process is, hoping the participants of the next iteration understand and continue the changes*
Questions?
Backup
ISO 9001 Quality Management System

• Quality management principles
 – Customer focus
 – Leadership
 – Involvement of people
 – Process approach
 – System approach to management
 – Continual improvement
 – Factual approach to decision making
 – Mutually beneficial supplier relationships
Where CobiT fits...

IT Lifecycle

Governance
Policy
Development
Delivery

Governance Frameworks

COBIT

Domain Standards

Debbie Lew, CISA, Ernst & Young, LLP
[Member, CobiT Steering Committee]
Development Life Cycle Model steps, IEEE 1074

- Selection of Development Life Cycle Model
- Tailoring of existing software & system engineering processes to create Project Development Life Cycle
- Development of project schedules of major artifacts and project roles
- Project members assigned to roles
- Project members create, review, revise, and transmit project artifacts to other project members or stakeholders. The work products or artifacts can be:
 - Process & product records, as simple as process start and end dates
 - Documents to share or review with team members or the customer
 - Final artifacts are customer deliverables, installations, and / or training
- Project artifacts are stored and managed as part of the project configuration management system
- Engineering processes & associated artifacts can be assessed
CMMI-DEV Product Suite

- Provides a set of best practices structured around the concept of a capability maturity model for organizations which produce products
- Set of appraisal methods
- Training courses.
- Provide a framework for organizations striving to improve their product development capabilities.
- Applicable to the development of products which contain one or more of the following elements – hardware, software, firmware and people.
CMMI-DEV

• **Process areas (or PAs)**
 – The primary structural element of a CMMI model
 – Composed of best practices which, when implemented result in satisfaction of associated goals for that process area.
 – Structure is common and includes required, expected and informative components

• **Capability Levels**
 – Each of the six capability levels represents a plateau of capability associated with a particular process area

• **Maturity Levels**
 – Each of the five maturity levels represents a plateau of organizational capability for developing products

• **Institutionalization**
 – Ingrained way of doing business that an organization follows routinely as part of its corporate culture
 • The process is ingrained in the way the work is performed and there is commitment and consistency to performing the process.
 – Generic Practices (GP) describe activities that address these aspects of institutionalization.
 – Progression of process institutionalization
CMMI-DEV Appraisal

• Examination of product development processes
• By a trained team of engineering professionals
• Using CMMI-DEV process reference model
• Reviews and/or collects objective evidence
• Determines of extent of practice implementation
• For identifying process strengths and weaknesses
CMMI Appraisals Published

Published Appraisal Results

Click the column header to sort by Organization, Organizational Unit, Team Leader, Sponsor, End Date, or Maturity Level. Click the Maturity Level or Appraisal Year to filter the list.

<table>
<thead>
<tr>
<th>Organization - Organizational Unit</th>
<th>Team Leader - Sponsor</th>
<th>Appraisal End Date</th>
<th>Maturity Level - Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIPRO Corporation - Wipro Infotech: Business Solutions Division</td>
<td>SanthanakrishnanSrinivasan - Rajat Mathur</td>
<td>Aug 14, 2003</td>
<td>ML: 5 - Staged</td>
</tr>
<tr>
<td>Wipro Technologies - Wipro Technologies Limited, SJFR Road, Bangalore</td>
<td>KrishnamurthyKothandaraman - Sambuddha Deb</td>
<td>Dec 22, 2006</td>
<td>ML: 5 - Staged</td>
</tr>
<tr>
<td>WISCO Engineering Technology Group Auto Co. Ltd. - WISCO Engineering & Technology Group Automation Company, Ltd.</td>
<td>RalphBowden - Bo Huang</td>
<td>May 30, 2006</td>
<td>ML: 3 - Staged</td>
</tr>
<tr>
<td>WISCOM SYSTEM CO.,LTD. - Wiscom System CO.,LTD.</td>
<td>WanJuyong - Chao Guo</td>
<td>Dec 15, 2006</td>
<td>ML: 3 - Staged</td>
</tr>
<tr>
<td>Wistron Information Technology and Services (Beijing), Inc. - Wistron Software Development Center</td>
<td>EmanuelBaker - Yu Yang</td>
<td>Jan 28, 2005</td>
<td>ML: 3 - Staged</td>
</tr>
<tr>
<td>Wolters Kluwer - Corporate Legal Services - CT Corporation & CCH CORSEARCH</td>
<td>MichaelD'Ambrosa - Chris Jutkiewicz</td>
<td>Sep 30, 2005</td>
<td>ML: 2 - Staged</td>
</tr>
<tr>
<td>Woori Finance Information System (WFIS) - Woori Finance Information System (WFIS)</td>
<td>SoowanLee - Jong Shik Kim</td>
<td>Nov 24, 2006</td>
<td>ML: 3 - Staged</td>
</tr>
<tr>
<td>World Information Technology -</td>
<td>SeshadriVenkatesan -</td>
<td>May 08, 2007</td>
<td>ML: 2 - Staged</td>
</tr>
</tbody>
</table>

SEI Appraisal Program http://sas.sei.cmu.edu/pars/pars.aspx